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The motion of a system of point masses in a negatively uniform force field is investigated. The Lyapunov instability of the 
Lagrangian configurations of the system, corresponding to constant distances between the points, is established. The proof of 
the instability is based cm representing the Lagrangian of the problem in question in a form which enables the H~milton action 
to be calculated in explicit form as a function of the phase variables. Problems of the orbital instability of the Lagrangian 
configuratiom are dis~k~sed. Copyright 0 1996 Elsevier Science Ltd. 

1. Consider a system of n attracting point masses, the Lagrangian of which has the form 

L = T + U = I y .  mi~2 + X r~j ri - r i 
2 i • ' Ir/il k ' 

(1,1) 

Here m i  are the masses of the points, ri = (xi, Yi, z i )  T are  their radius vectors, referred to an inertial 
system of coordinates with origin at the centre of the masses mi,  the positive constants ~, and k reflect 
the nature of the attraction, and i , j  = 1, 2 , . . . ,  n everywhere. In particular, if the constant k is equal 
to the gravitational constant G > 0, and k = 1, we arrive at the Newtonian problem of attracting points. 

We know [1-3], that the configurations of the point masses I rij I = r ~ ( t )  corresponding to periodic 
motions of the system, discovered by Lagrange in the Newtonian problem, occur in the more general 
case of Lagrangian (1.1). The situation is similar with the integrals of motion. Below we will essentially 
use the integral of the energy 

T -  U = h = const (1.2) 

and the vector integral of the angular momentum 

Y~ mir  i x ~ = C (1.3) 
i 

We will confine ourselves to considering the plane Lagrangian configuration of n point masses 

I ,il = r0,i = ~o.st (1.4) 

assuming, without loss of generality, that the points are situated in the xy plane. Using a system of 
coordinates rotating round the z axis with constant angular velocity ¢o, as previously employed in 
[3, p. 439], the Lagrangian (1.1) can be convened to the form 

t.=r2+  +to + u  

F 2 = I ~ .  m,~2 T I = O 3 T  " m , ( x i # i _ y i k i )  ' T 0 = 1 ¢ 0 2 ~  mi(x  2 +y2)  
2 i ' i 

(1.5) 

Here, for convenience, we have retained the previous notation for the components of the vectors ri and 
ti. 

?Prikl. Mat. Mekh. Vol. 60, No. 4, pp. 595-4502, 1996. 

591 



592 S. E Sosnitskii 

As a result, the energy integral takes the form 

T2 - To - U = h ' =  c o n s t  ( 1 . 6 )  

while the projection of the angular momentum onto the z axis can be written in the form 

to-' (T t + 2T 0) = C; (1.7) 

It is henceforth more convenient to take integral (1.7) in the form 

T I + 2T 0 = (oC~ = c (1.8) 

The meaning of the use of  a rotating system of coordinates is the fact that the Lagrangian configuration 
(1.4) (3mriodic motion of the initial system) becomes a set of  critical points 

= O, r i = roi, zl = 0 (1.9) 

of  the Lagrangian L in the form (1.5). The critical points (1.9) correspond to the position of equilibrium 
o f  t h e  s y s t e m  

d ~L ~L --0 (1.10) 
at ~ i~r~ 

which simplifies the investigation of the stability of solution (1.4). 

Lemma. Lagrangian (1.5) can be represented in the form 

L :  X ) ), k .2 

Proof. Using the equality 

aL £=x, p,~-H, P=a~ 

where H is the Hamiltonian corresponding to Lagrangian (1.5), we can convert (1.12) to the form 

L= p, ri -Y. ~ - H  • a,, 

(1.11) 

(1.12) 

(1.13) 

S i n c e  

i}L -~. ~--=-r'-2r°+kV=-r'-2T°÷kv+~:(r2-r°-h')=a,, ~ , 

k kT, _kh, 
= - c + - 2 ( T 2 + T I + T ° + U ) - k T ° - - 2  ! 2 

Equation (1.13) can he represented in the form 

.,r,)" +. , +  

(1.14) 

(1.15) 

whence we obtain (1.11). 
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If k = 2, representation (1.11) will not hold, and we then obtain from (1.15) 
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(E v,,~)" = ~-~ (c+h') (1.16) 

Two integrals of motion, which supplement the ten existing ones, follow from (1.16) (compare with 
[1, p. 2941). 

Equation (1.11) is the key equation for investigating the stability of solution (1.4) and, in particular, 
enables us to obtain an explicit expression for the Hamilton action function for a system with Lagrangian 
(1.5) (compare with [4]) 

2 OL 2 + k.  , 

2. Since (1.9) is the position of equilibrium of system (1.5), (1.10), we will represent the quantities 
r~ in the form 

ri = roi + ui (2.1) 

where ui = (~, ~i, ~)r  corresponds to a small perturbation of the vector r0/. 
From (2.1) we have ?i = ai. Hence, in the neighbourhood of the equilibrium position the Lagrangian 

L, by (1.5) and (2.1), takes the form 

t.= (to + U)lr__r, + a(~.n) + r2" +r," +rg +W" 

1 
Cff~'q)=C0Zi mi ( x°{qi - Yoi~i )" T~2 = -~ ~ i mi ~ 2 

~]" = m Z  mi(~irli -~i~i) ,  To" = l o ) 2 Z  m;(~/2 +Th 2) 
i 2 i 

U.=I_]~ b _ ~  uiuj +O(llull3), r=(r~ ..... r~) r u=(u~ ..... u,) r 
2 i,j 0riarJ [r='o 

Using (2.2), we can represent (1.11) in the form 

(2.2) 

d 2 + k .  h' 
L° ='~f Y . o - ' ~ ( c  + )-(To +U)~=r ~, k # 2 

2 ~;o=~-2--£~ p;~-a(~,,o, c=~+r,'+To'+v" 
Noting that, by (1.14) 

(2.3) 

(2.4) 

and, moreover, by (1.6) and (1.8) 

h'=-(To +U~,,_~ - ~ - V ' +  ~ ,  c = 2rol,:~ +A(~,n,~,fi) 

A(~,n,~,fi)=~(~,q)+2co2Y. mi(xo~i +yoi~)+Tl" +2To* 
i 

we can convert (2.3) to the form 

d - 2+k  . . 
L ' - - - ~ t Z o - - ~ ( c  +h ), k.*2 (2.5) 
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h" = h'+(ro + U)[:~ =r;  -r;, -o" 

: =~-2rol = a(~,n,~,n) 
rt =~a  

(2.6) 

(2.7) 

Theorem 1. The plane Lagrangian configuration (1.4) of system (1.1) is Lyapunov unstable. 

Proof. We first note that if k = 2, the instability follows from (1.16). Hence below we will assume 
that k ,  2. 

We will assume that solution {1.4) is Lyapunov stable. Then, the equilibrium position a = u = 0 (u 
= (ul . . . .  , un) j, ui = (~, vii, ~)~) of the equations of the perturbed motion 

d OL" bL" 
- - = 0  

dt ~t i  i Ou i 
(2.8) 

will also be Lyaptmov stable. 
We will use the analogue of (1.13) for Eqs (2.8) 

bL" 
(2.9) 

where the Hamiltonian H* corresponds to the Lagrangian L*. 
Using (2.5) and differentiating (2.9) we obtain 

at 2 xo= ,,,., t ,  ~.,J (2.1o) 

Integrating (2.10) we obtain 

(2.11) 

Since, by(2.1) 

Y-Pig =Z [uiui +mi(xoi~i +Y0/fii)I 
i i 

we can write the expression in braces on the left-hand side of (2.11)in the followingform 

. .  . .  

+ 2 - k  mi(x°i~i +Yoirli)] _ 2.,ui'" ~,,aL" ]1 
, ~u, 31,=o 

Taking into account the fact that, by the equations of perturbed motion (2.8) 

m,~, = O¢r;~ + v ' )  + 2,,,..,~,, .,,~, =a¢ro" + v ' )  _ 2o.,nA, 
~i ~i  

from (2.9) and (2.11)--(2.13) we obtain 

(2.12) 

(2.13) 
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d I OL" =-2 . ,  
t=O i ~bt i  

2 + k  2 a(rg+v')] 
= - -  ~ Ot - X o i  + Y o i  

2 - k 2 - k 0~, ~rli 

(2.14) 

The function 
expression 

2 3L" 
- 2 - - : / ( c  (2.15) 

13 is not the integral of  motion of  system (2.8), which can be seen from the 

 (Tj + u') ; (Tff + U') + )] 2ox, n~ Yo, fl, 
J 

Hence, almost all its trajectories intersect the set of levels of the function 6. 
According to the assumption on the stability of the equilibrium position a = u = 0, almost all the 

phase trajectories of system (2.8) which pass through a sufficiently small neighbourhood of it, possess, 
by virtue of Poincm:6's theorem [5], the property of reversibility (Poisson stability). Hence, by considering 
them to be closed., we can always distinguish, in as small a neighbourhood of the point a = u = 0 as 
desired, a Poisson .,;table invariant transitive set Fwith invariant normalized measure It* in it [5-7]. Taking 
into account the fact that I~ is not the integral of motion of system (2.8), F can be chosen in such a way 
that F does not belong to the set of levels of the function [~. 

By the Birkhoff-Khichin theorem [5, 6] we have 

Z u ,  OL" ( r ) ~ =  lira i Y_,ui ~u~ (r)dx = x = const (2.16) 

where the constartt x is independent of the position of the initial point on F, with the exception of the 
set of points of zero measure (with respect to It*). 

On the other hand, from (2.14) we obtain 

(2.17) 

Hence, the mean, according to (2.17), is determined by the initial position of the representative point 
on F. Here, the measure of such initial positions (with respect to It*), if we take into account the fact 
that F does not belong to the set of levels of the function 1~, is non-zero. We have arrived at a 
contradiction. Hence we conclude that the assumption that the equilibrium a = u = 0 and hence the 
solution (1.4) is stable is untrue. Theorem 1 is proved. 

Corollary. The  steady triangular Lagrange solutions I rii [ = ro = const of  the three-body problem are 
Lyapunov stable. 

Notes. 1. The change from (2.10) to (2.14) can be interpreted as the integration procedure in (2.10) of the quantities 
along the vector fidd defined by the equations of perturbed motion. Hence, within the framework of the proposed 
approach, we can follow the relationship with the secondary Lyapunov method, in which, when investigating stability, 
the differentiation operator along the vector field is employed. 

2. The proposed scheme for proving the stability of the Lagrangian configuration (1.4) remains true in the case 
of the plane problem (z = 0), when the perturbations belong to the configuration plane. 

3. We will confine ourselves below to considering the plane problem of attracting point masses (z = 
0), thereby assuming that the perturbations of the stationary Lagrange configuration (1.4) belong to 
the configuration plane. 

Since system (1.1) allows of the existence of an integral of  the mass centre, then in accordance with 
the choice of the system of coordinates, we can assume without loss of generality that 



596 S. E Sosnitskii 

~'~mir i = 0  
i 

(3.1) 

and, as a consequence [8, 9], we obtain 

~" miri 2 = M -I ~. mimjlrij 12 , 
i i < j  

Using (3.1) and (3.2) we have 

T O = l ~ 2 M - I  ~ mimjl~jl 2 
2 i<l 

M = Y.  m i (3.2) 
i 

Starting from the existence of solution (1.4) we can write 

I r/j I= roi j + x o, i < j (3.3) 

where xii correspond to small perturbations of  solution (1.4). Then, in the neighbourhood of  the point 
1 I"# I = r~  we obtain 

:±,,:M-': + ~r~: )mim i T° + U = ~ .  [,2 Oil + ~- (°~2M-Iroii-Lkr~:-I)mimixo + 
t< l  i< j  

+ - ~ .  [fo2M -' +)&(k+l)r0o ]mimixo+ Ilxqll 3 (3.4) 
2 i<j 

In particular, as can be seen from (3.4), in the case of  the three-body problem, when r0~ = r0 = const, 
~. = G, k = 1, the choice of co in accordance with the equality o~ 2 = MGr~ 3 ensures that there are no 
linear terms in x 0 on the right-hand side of  (3.4). Hence, in this case the critical points of the function 
To + U in the configuration space correspond to its critical points in the mutual-distance space. In the 
general situation, as has already been seen in the example of the four-body problem [3, p. 428], this is 
not so. 

In addition to (3.3), using (2.1) we have the equation 

Ir, I = ro, > ÷ <" , -  

and hence, the perturbations x 0 of the steady mutual distances I ro I = r~  can always be expressed as a 
function of the perturbation ui and uj of the vectors r0i and r0j, which correspond to Lagrangian 
configuration (1.4). The relation between x 0 and ui and u; enables us to formulate the following question: 
under what conditions of Lyapunov instability will solution (1.4) imply orbital instability of  the latter? 

Theorem 2. Suppose the following exist: 
1. a departing solution u*(t) (ul, r = . . . ,  un) of the equations of  perturbed motion (2.8), which pass 

as close to the origin a = u = 0 as desired; 
2. the sequence {t~} C J+ = [0, a[ (J+ is the maximum right interval) 

lim ts = a  (s = 0,1,2 .... ) 

such that the function strictly increases i fs  ---> ~,  u*(t,) e s~ = {u ~ R ~, U u II < e}. Then the plane 
Lagrangian configuration (1.4) is orbitally unstable. 

Proof. From (2.2) and (3.4) we have 

7.. (o 2M-'roo - Xkro~) -~)m,m:o + 
I<:J 

+- z + +,ro:: l,n,m,,,g + ""o': = TO" +"" 
2 i<j 

(3.5) 
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An increase in T~ + U*, by the conditions of Theorem 2 on the departing solution, implies a similar 
property of the left-hand side of (3.5). Since in the unperturbed motion ] r# I = r~ = const while xo~t,) 
= I ro(ts) I - to#, an increase in the left-hand side of (3.5) in a certain neighbourhood ss(8 = 5(e)) of the 
stationary Lagrange configuration (1.4) is equivalent to the perturbed motion emerging from s8 
irrespective of how ,:lose it was to the Lagrange configuration (1.4) at the initial instant of time. The 
property of perturbed motion obtained does not satisfy the definition of orbital stability (see, for example, 
[10, p. 478]) of the steady motion (1.4). Theorem 2 is proved. 

Corol lary  1. If the characteristic equation corresponding to the equations in variations of system (2.8) 
contains roots with real parts, not equal to zero, the plane Lagrange configuration (1.4) is orbitally 
unstable. 

Proof. The equations of perturbed motion (2.8) allow the existence of solutions that are asymptotically attracted 
to the point ,~ -- u = 0 when t -* ~* and t -~ --~ (see [11, p. 104]). Then, taking the energy integral of the equations 
of perturbed motion (2.6) into account and noting that the asymptotic solutions belong to the zero-level set of its 
values, we arrive at the conclusion that the conditions of Theorem 2 are satisfied. 

In particular, in the three-body problem the characteristic equation corresponding to the equations in variations, 
can be reduced to the: form [10, p. 586] 

(~.2 +e~2)(X4 +¢02~.2 +/o~4)= 0 

k = 2~74(mlm z + mira 3 + m2m3)(m I + m 2 + m3) -2 

and hence, the stationary triangular Lagrange solutions are orbitally unstable when the following inequality is 
satisfied 

27(mira 2 +mlm 3 +m2m3)> (m I +m 2 +m3 )2 

Corol lary  2. If a solution of the equations of perturbed motion (2.8) exist, which tends asymptotically 
to the point a = u = 0 when t ---> .o (t ---> --o.), the plane Lagrangian configuration (1.4) is orbitally 
unstable. 

Corollaries 1 and 2 enable us to assert that Theorem 2 is constructive. 

Notes. I. The quantity T~ + U* as a function of u is, in many eases, for example, in the three-body problem, 
degenerate (grad (T~ + U*) may vanish when II u II *: 0). Hence, it does not follow from the Lya]~unov instability 
of the equilibrium position a = u = 0 that a departing solution u* (3) exists in which the function To + U* increases. 
Hence, without additional limitations, Eq. (3.5) does not enable us to establish the equivalence between the 
Lyapunov instability of the Lagrange configuration (1.4) and its orbital instability. 

2. The equations of perturbed motion (2.8) belong to the class of conservative systems with gyroscopic forces, 
when the latter are o)mmensurable with the potential forces. Hence, finding the Hamilton action function in explicit 
form in this case, uclike [4], does not enable one to use it so simply to investigate stability. Nevertheless, the use 
of the action function as a certain analogue of the auxiliary Lyapunov function also turns out to be constructive 
in this situation. Note that the well-known criteria of instability of equilibrium (see, for example, review [12]) mainly 
relate to the case ~hen the potential forces that give rise to the instability of the equilibrium prevail over the 
gyroscopic forces. V~nen considering the opposite case, when the gyroscopic forces prevail over the potential forces 
[13], a special structure of the potential energy was assumed, which is not covered by the function T~ + U*. 
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